Introduction to the SPL Interpreter

Stephen Monk
November 2011

Background and System Requirements

Background

* This is an introduction to the SPL interpreter —

the application that executes programs
written in SPL.

tis not an introduction to SPL itself.

However, even if you don’t know SPL, you will
probably understand most of this
presentation.

System Requirements

The SPL interpreter requires a Java virtual machine (version 6 or
later) and any modern browser (IE, Firefox, Chrome, Safari, etc.)

The essential features of the SPL interpreter are available in all
computing environments that meet those conditions. These
features are:

Creating and running programs

Tracing programs with breakpoints

Formatting code

Creating snapshots of a program’s state

Drag-and-Drop text between the interpreter and native applications.

Continued ...

System Requirements

Two additional features of the interpreter — File Operations and

Copy/Paste — require permission to access your local machine. Permission
is granted via the Java Network Launch Protocol (JNLP).

It is very likely that JNLP is already installed on your machine — it is part of
all recent Java releases.

However, if JNLP is not available on your computer, and if you are not

allowed to install it (perhaps because you are in a restricted environment,
such as a computer lab), then:

- You will not see the buttons related to these features. (See next slide.)

- You will not be able to use these features (but note that Drag-and-Drop is still
available.)

- In this tutorial, simply skip the sections dealing with these features.

System Requirements

File Operations Copy/Paste

=l © = = |e+d[H O
l [
These features require access
to your machine via JNLP.
If you don’t see these buttons, —_—
don’t worry — you can still use [
e the essential features Of the --
Output . :
interpreter.
File: Untitled | 111

Proceed with tutorial ...

Overview of Application Components

Sections

Tool Bar

= ® = R s d [= 0

F Memory

[
-l

Shows values of all

| variables stored in
i memory during

Code Editor Srogram

Your program goes here. execution.

e T
“|-User Input

S ——————————— Shows values
Output | entered by the
user during
Shows all output produced by your program program execution
during execution. —i.e., as a result of
; “input”
commands.

File: Untitled Status Ba r 111

[1]
9,
il

M e o B O

Kemory

[
-l

Adjust the sizes of the windows
by dragging the separator bars.

Or use the blue arrows to
maximize or minimize.

File: Untitled 101

Windows

1]
Q
i
<
o
(0

[
-l

F Memory

Note: scroll bars will appear automatically| ===
. . i) User Input
in all windows when needed.

File: Untitled 11

® O

i
.
o

of b i

Memory

Line Numbers Current Line
Highlighting e

User Input

File: Untitled 111

Status Bar

O

1]
@),
i
)
e
a

[
-l

F Memory

e T
“|-User Input

Current File Cursor Position
line | column \

File: Untitled } \ 11

The Tool Bar — Details

1]
@,
i
e

2 o [¥

F Memory

[
-l

Toggle line numbers on/off

e T
“|-User Input

File: Untitled 101

1—
 j—
El O

[i
<l

« # I O

F Memory

[
-l

e T
“|-User Input

File: Untitled 11

O

1]
@,
i
e
o
a

1 \ : Memory
Format code / Undo formatting

User Input

File: Untitled 101

B |

il
il
.

2 o [¥

F Memory

[
-l

Create a snapshot of current program state.

e T
“|-User Input

File: Untitled 101

2 o [¥

.

1]
@,
i
e

[
-l

F Memory

Create, open, and save files.

e T L
“|-User Input

File: Untitled 11

1]
@,
i
e

e:-‘lj/v O

1 : Memory
Transfer text to/from system clipboard.
e ———
e

File: Untitled 101

O

1]
Q

i
.
o
-

[
-l

b Memory

Each button on the tool bar will display a brief descriptiicé n of
its function when the mouse hovers overit. |

e T
“|-User Input

File: Untitled 11

Running a Program

Running a Program

il
il
-
«,

2 o =5 ¥

F Memory

[
-l

After you have entered a program
here, in the editor window, you are
ready to run the program.

The following slides demonstrate how e Sm————
to do this with an example program. | user nput

File: Untitled -

Running a Program

= 3= cos | What does this program do?
= O =) prog
1 # Get two numbers from the user .alqd display them. .. It aSkS the user to enter two numberS.
2 input numberl prompt "Enter the first number:™ .
3 input numberZ prompt "Enter the second number:™ The two numbers are stored in the
4 putput "numbkerl is " & numbkerl . . D I o
5 putput "number? iz ™ & number? variables “numberl” and “number2”.
[g
7 # Swap the contents of the two variables. (llnes 2‘3)
i S It then displays the variables. (lines 4-5)
10 set numberl to number? o 3
¥ oot mumies? to tem Then it swaps the contents of the two
s . . variables. (lines 9-11)
13 # Display the two wvariables again. . . .
14 cutput "numberl is " & numberl ~ Finally, it displays the contents of the
15 output "number? is " & number? . . .
16 two variables again. (lines 14-15)
D“m“t ... :

File: "swap.spl” 161

Running a Program

& What output will the program produce?

]
i
Il

-
1 # Get two numbers from the user and display them. Suppose the first number entered is 29’
2 input numberl prompt "Enter the first number:™ .
3 input number? prompt "Enter the second number:™ and the Second number IS 53 Then we
4 putput "numbkerl is " & numbkerl .
5 putput "number? iz ™ & number? should see the fO”OWlng output:
£
7 # Swap the contents of the two variables.
8 output "swapping ..." o
9 set temp to numberl numberl 1S 29

10 set numberl to number? 0
11 =zet nurmker? to temp number?2 1s 53

&5 swappin
13 # Display the two variakles again. pp g

14 putput "numberl is " & numberl numberl 1s 53
15 output "number? iz " £ number?

16 number? is 29

Output

File: "swap.spl” 161

Running a Program

Get two numbers from the and display them.
input numberl prompt "Enter the
input number? prompt "Enter the
ogutput "numbkerl is " numkerl
putput "number? is " number?

Swap the contents of the two variables. We W|” press the

gutput "swapping ...
et temp to numberl

10 set numberl to number? Run bUtton tO run

11 set number? to te
T = the program ...
13 # Display the two variakles again. :
14 putput "numberl iz " & numberl :|-User Input
15 putput "number? is " & number? :

1&

Memory

&=
=

L u TR o Y GO o it

L]

N T e

e B A e e e e e e A A e e e e et et e a0 i

Output

File: "swap.spl” 161

...and ...

Running a Program

= L o 11 g If]

= O

Wi

1l # Get two numbers from the user and display them. 1 Memory
Z input numberl prompt "Enter the first number:™ r number? = 29
3 input numker? prompt "Enter the second numbker:™ numberl = 53
4 putput "numbkerl is " & numberl i temp = 29
5 output "number? iz " & number?
&
7 # Swap the contents of the two variables.
8 output "swapping ..."
9 get temp to numberl
10 set numberl to number?
11 set number? to temp
1z 3
15 # Display the two variables again. 55 e T
14 putput "numberl iz " & numberl | -User Input
15 output "number? iz " & number2 numberl = 29
16 | ‘| number2 = 53
E e T T T T T T T T A T T T T T T T T T T T T T T R T T T T T T T T T T T T T R T T T T T T T S R I T R T A R S R T T e T T S T A R S T T R T A S R T T e T A T S A T A R R T T M T A R S R T A R e 1 :
Output
numkerl is 29
numker? is 53 .
swapping ... The output is what we expected.
numkerl is 53
numker? is 29
File: "swap.spl” 1611

but there’s more ...

Running a Program

The Memory window shows the current
values of all variables.

values of the variables are displayed.

— this variable was not set by the user, but
came from the line 9 of the program.

So, after the program has finished, the final

Tl

Notice that it also shows the variable “temp” 4 [——
ﬁ nunb;rl
 temp = 239

I

7§ oJwdp LIIE CONLEINLS OL LNE LwWo varlabled.
8 output "swapping ..."

mmmmml)- ¢ set temp to numberl

10 set numberl to number?
11 set number? to temp
e

The User Input window shows the original
values of any variables that came from the
user (i.e., from an “input” command).

=+ For example, notice that the value of
“numberl” shown here is 29, which is the
d value the user originally entered.

Iel

Memory

il

| e W

User Input
E nurberl =
:| number2 =

il

File: "swap.spl”

16 |1

Debugging/Tracing a Program

Debugging/Tracing a Program

Most programs execute very quickly. There are many
things happening in the computer’s memory during that

short time.

It is sometimes useful to watch what is happening at a
slower pace.

- Lets us understand why the program behaves the way
it does.

- Helps us figure out problems with the program.

Debugging/Tracing a Program

The process of examining the state of a program at
intermediate points in its life-cycle is called “debugging”
or “tracing”.

This is accomplished with the use of breakpoints.

- A breakpoint is an instruction that tells the program to
pause at a particular line.

Debugging/Tracing a Program

You can add a breakpoint to your program by clicking on the
line number to the left of the code. The line of code will be
highlighted in pink.

You can remove a breakpoint by clicking the line number
again. The highlighting will disappear.

You can add as many breakpoints as you want, but only on
lines that contain executable code.

- You can’t add a breakpoint to a blank line, a line containing a
comment, or a line starting with “else”, “endif”, or “endwhile”.

Debugging/Tracing a Program

When you run the program, it will pause when it reaches
a breakpoint and wait for you to tell it to continue. This
allows you to see what is happening at that point.

To illustrate the debugging features, let’s return to the
“swap” program that we used earlier ...

Debugging/Tracing a Program

Run Next Finish

®)

What will happen when we run the program?

i
Il

All of the code before line 4 will execute, and

input numberl prompt "Enter the first number:™ then the program will pause at line 4.

The highlighting on line 4 will change from
pink to green.
arisbles. * The tool bar will change to indicate that the
program is now in “debug” mode:

the Run button will be disabled;

4 Display the two variables again.) the Next button and the Finish button

will be enabled.

1l # Get two numbers from the user and display them
2
3 input number? prompt "Enter the second number:™
4 putput "numberl iz " & numberl
S output "numkerZ is " & number?
£
7 # Swap the contents of the two v
8 output "swapping ..."
9 szet temp to numberl
10 szet numkerl to number?
11 szet number? to temp
1z
13
14 putput "numberl is " & numberl
15 putput "number? is " & number?
16
Three breakpoints
have been set — at
lines 4, 10, and 11.

File: "swap.spl”

16 |1

Continued ...

Debugging/Tracing a Program

Also note that the Run button is now disabled, and
the Next and Finish buttons are enabled.

b

— P e,
= - -
a— g]

1 -~ .l'
b .-"'/

i
Il

1l # Get two numbers from the user and display them.
2 imput numberl prompt "Enter the first number:”

3 input mumber? prompt "Enter the second number:™
4 putput "numberl iz " & numberl

I output "numkerZ iz " & numberZ
£
7
a

The program has paused at line 4.
T ovep the eontents 0% the w0 T (This is indicated by the green

cutput "swapping ...
9 szet temp to numberl 3 . . .
10 set numberl to number?d hlghllghtlng on llne 4)
11 3et number? to temp

13 # Display the two variables zga: NOte that the variables in the
14 putput "numberl is " & numberl .
15 gutput "number? is " s number? Memory window have the same

la -
| values as shown in the User Input
A AN AR AL IR RS AR AL AR RS AR AR AR AR B R A R R R BN R R R R A IR R AR .
Output window.

yet been changed by the program.

This is because the variables have not

Tl

Memory

| number2 = 53

i numberl = 29

e
User Input

nurkerl = 29
-| nurber2 = 53

File: "swap.spl”

16 |1

Continued ...

Debugging/Tracing a Program

— P e,
1 3 /)“‘/
 — 15 e
15

-

i
Il

@ g d 3 O

1l # Get two numbers from the user and display them. { Memory
2 imput numberl prompt "Enter the first number:” F mumber? = 53
3 input number? prompt "Enter the second number:™ numberl = 29
4 putput "numberl iz " & numberl %
I output "numkerZ iz " & numberZ g
: To proceed, we have a choice:
7 # Swap the contents of the two ., = B
 otpnt mawapping .. ." Pressing the Next button will
9 szet temp to numberl 1
e ac-jvance- to the next breakpoint
T (line 10 in this case); or
13 # Display the two variables agas © Pressing the Finish button will e o e
14 putput "numberl is " & numberl . . . :|-UserInput
15 putput "number? is " & number? ignore the remaining) numberl = 29
1a . E: 2 =
| breakpoints and complete the | == = =7
W W R e e 9 0 9 A
Output program without pausing again. -
Let’s choose the first option ...
File: "swap.spl” 1611

Continued ...

Debugging/Tracing a Program

e
|11
Bl
‘
|
o i
'\-\.\-}_
il
Il
=
|
.
e
F
f—

1l # Get two numbers from the user and display them. 9 Memory

2 input nmumberl prompt "Enter the first number:™ F number? = 53

3 input number? prompt "Enter the second number:” numberl = 29

4 putput "numberl is " & numberl temp = 29

o tput "number? is " & number? . 3

 CviPeh ThERe S8 ¢ 8 mHheE Lines 4, 5, 8, and 9 have been

7 # Swap the contents of the two vari

 Sitpot mwepping .. .- executed, and the program has

9 szet temp to numberl 1

10 set numberl to number? anSEd at line 10.

11 szet number? to temp

12 i

13 # Display the two variables again. o ARRARRRRRRATRR AR AR WRRRRRR R AR
14 cutput "numberl is " & numberl i) User Input

15 putput "number? is " & number? numkberl = 29

16 number? = 53
T

Output In the Memory window, we see

umberl is 29

numberl i3z 2 . . .
number2 is 53 In the Output window, the result of line 9: the variable
SWEPEIRG .- we see the results of “temp” has been created with the

lines 4, 5, and 8. same value as “numberl”.
B I

File: "swap.spl” 1611

Now let’s press the Next button again to

advance to the next breakpoint (line 11). Continued ...

Debugging/Tracing a Program

g
|11
- |_,
b
|
0\\/;
i
Il
]
L
Lo
-
j —

1l # Get two numbers from the user and display them. 1 Memory
2 imput numkerl prompt "Enter the firat number:” F number? = 53
3 input numker? prompt "Enter the second number:”™ mumberl = 53
4 putput "numberl i3 ™ & numberl temp = 29
5 putput "number? iz " & number? 2
]
7 # Swap the contents of the two variables.
& oputput "swapping ..."
9 set temp to numberl .
L0 T ———— Line 10 has been executed, and the
T program has paused at line 11. :
13 # Display the two variables again. P
14 putput "numberl i3 " & numberl User Input
15 putput "number? iz " & number? nurberl = 249
la | numberz = 53
e T e A e e e e e e e e e e A e et e e
Output -
numberl is 29 In the Memory window, we see the
urber2 is 53 5 g
Sveroing .. result of line 10: the variable
“numberl” has been changed so that it
contains the same value as “number2”.
E| |
File: "swap.spl” 16 |1

Now let’s press the Next button again. Since
there are no more breakpoints, this will

: Continued ...
complete the program’s execution.

Debugging/Tracing a Program

Note that the Run button is now

ENG - 1 w0
= = enabled again, and the Next and
1 # Get two numbers from the user Fln|Sh bUttonS are dlsabled' _F". Memory
2 imput numbkerl prompt "Enter the first number:™ ﬁ number? = 29
3 input number? prompt "Enter the second number:™ ﬁ numberl = 53
4 putput "numberl iz " & numberl ; temp = 29
S output "number?Z iz " & number? ﬁ
e :
7 # Swap the contents of the two variables.
8 output "swapping ..."
9 szet temp to numberl
10 set numberl to number?
11 set number? to temp
i . o _ _ Lines 11-15 have been executed, e
13 # Display the two variables agair ' - (Ao,
14 output "mumberl is " = numberl | gnd the program is finished. /| Userinput
15 cutput "numbker? is " & number? | numkerl = 29
16 | E nurker? = 53
e T R0 0 :
Output In the Memory window, we see the

numberl is 2
numker? ia 5
swapping ...
numkerl ia 5
number? is 2

In the Output window,
the results of lines 14 and
15 have been appended.

result of line 11: the variable
“number2” has been changed so that it

contains the same value as “temp”.
E| |

File: "swap.spl”

16 |1

Formatting Code

Formatting Code

O
[

L

Al

O

Memory

do the following:

Warning: All breakpoints will be removed!

Once you have entered some code, pressing the Format button will

Start a new line for each occurrence of “input”, “output”, “set”,
“if”, “else”, “elseif”, “endif”, “while”, and “endwhile”. =
Indent the contents of each “if-elseif-else-endif” and “while-
endwhile” block.

Ensure that there is at least one space before and after each

mathematical, relational, and logical operator.

File: Untitled

see next slide for example ...

Formatting Code

= O 3= K

Undo button is
now enabled.

Ly TN O I e]

input number

if number:2=0 then ocutput "ewven"
else output "odd”

endif

Lo T B OO I S

input number
if numkber ¥ 2 = 0 then

ocutput "ewven™
glse

output "odd”
endif

Snapshots

—
1—
=] O

i
<
o

/ |

O

Pressing the Snapshot button creates a
report containing information about
the current state of the program.

Memory

The report is produced in HTML format and is

displayed in a new window in your browser.

| I T 1 Dut

The report shows the contents of the four
windows: the Code window, the Memory
window, the User Input window, and the
Output window.

File: Untitled

You can produce a snapshot report at any time
— before running a program, while paused at a
breakpoint, or after the program has finished.

Example ...

Snapshots

= > » [= @) +«Jd R O
1l # Get two numbers from the user and display them.' i Memory
2 input numkerl prompt "Enter the first number:™ F mumber? = 53
3 input numker? prompt "Enter the second number:™ numberl = 53
4 gutput "numberl is " & numberl | temp = 29
5 putput "number? iz " & number? w“ ” . :
6 The “swap” program is
7 # Swap the contents of the two var . .
§ output "swapping ..." running and is paused at a
9 set temp to numberl))
10 set numberl to number2 breakpoint at line 11.
11 set number? to temp
1z i
15 # Display the two varizbles again. e T R R R T A B R D
14 putput "numberl is " & numberl A Snapshot report should :|/ User Input
15 putput "numker? is " & number? | numberl = 29
L ——— accurately display the | [mmvez2 = 53
Output contents of the four 1
numkerl iz 29 .
number2 is 53 windows. (It won’t show the
swapping ... 5 o o .
line highlighting, though.)

File: "swap.spl”

Let’s press the Snapshot
button to see the result ...

16 |1

Continued ...

Snapshots

The report shown below is one document,
but it’s too big to show in one screen.

T B = — B fireron = -
|| file:///E/jdev/splWeb/dist/interpreter.html I || file:///E/jdev/splWeb/dist/interpreter.html
| |
Source Code A. . . .
| | User Input The report is independent
| 1 # Get two numbers from the user and display them. i
2 input numberl prompt "Enter the first number:" * numberl = 29
3 input number2 prompt "Enter the second number:" * number? = 53 Of the program'
4 output "numberl is " & numberl =
5 output "numberZ is " & number2
[
7 # Swap the contents of the two variables. MEI[I.O]’.'Y It iS Standard HTML SO you
l 8 output "swapping ..." ‘ 4
9 set temp to numberl ¢ number2 = 53
10 set numberl to numberZ2 ¢ numberl = 53 Can nOW dO Whatever you
11 set number? to temp e temp = 29
12 ‘ —
13 # Display the two variables again. Want Wlth It Save It’ prlnt
14 output "numberl is " & numberl . o] *
15 output "number2 is " & number2 Output It, emall It, etC.
L
1 numberl is 29
2 number2 is 53
User Input 3 swapping ...
L5 - —— - — —— - = -

In fact, the reason that the Snapshot feature
exists is because a screenshot doesn’t have
enough room to show everything at once.

File Operations

(Skip this section if these features are not available in your environment.)

File Operations

[1]
9,
il

i O‘L [O

F Memory

[
-l

The New File button closes
the current file (if any) and
starts a new, blank file.

e T
“|-User Input

File: Untitled 101

File Operations

fi
O
i
"
o
| "

O

% Memory
The Open File button
displays a new window that
allows you to choose an
existing file on your local
machine. e
; User Input
—

File: Untitled

File Operations

1]
{il
Il

M JOH

The Save button (shown disabled here) is
enabled when the contents of the code window

have changed.

If there is an existing file open, then pressing
this button will save the contents to that file.
If this is a new file, then pressing this button
will display a new window asking you to

name the file.

Memory

e

User Input

File: Untitled

See next slide for example ...

File Operations — Save Example

il
O
i

.

Ly

|

1l # Get an input from the user and display it. { : Memory
2 2
3 input value prompt "Enter something:™
4

The Save button is disabled

because the user has not

yet entered any new code.

; ————
—_—
The user has opened a file
called “userinput.spl”

File: "userlnput.spl” A/

411

Continued ...

File Operations

— Save Example

I
il
]
= 1
W,

s J HR ¥

Get an input from the user and display it.

1
2
3 input wvalue prompt "Enter something:™
4 putput "You entered: " & value

5

2 Memory

\

The user has entered new
code on line 4.

The Save button is now enabled.

Let’s see what happens when the
button is pressed... = ———

File: "userlnput.spl’

511

Continued ...

i
Il
-
"

File Operations — Save Example

of the save operation.

1l # Get an input from the user and display it. : Memory
2 :
3 input value prompt "Enter something:™ \
4 putput "You entered: " & wvalue 3
5
The Save button is
now disabled again.
The user has pressed the Save button.
Usermp“t ...
e W The Status bar Shows the time and date
Out

File: "userinput.spl” saved at 08 Movember 2011 12:13:13 AST

511

il
«,

File Operations

The Save As button saves to a new file.

It opens a new window to ask for a file

name and then saves the contents of the

code window to that file.

You can use this feature instead of having to

copy the file and then rename it.

F Memory

e

User Input

File: Untitled

Transferring Text

Drag-and-Drop

The quickest and easiest way to transfer text between
the interpreter and a native application is to “drag-and-
drop” the text.

These actions do not access your local machine and
therefore do not require special permission.

Examples ...

Drag-and-Drop 1

= | B [|

BT TextPad - Documentl

E H &b
o= O ‘H L] *‘{ File Edit Search iew Tools Macros Configure Window Help
DEE 8 &N S =E@ @Y 4R ot e ue » - iFindincementaly [T
- X

1l # Get two nurmbers from the user and diaplay them. 1 Memory
2 input numberl prompt "Enter the first number:™ ’ Documentl

3 input number? prompt "Enter the second number:" H

4 gutput "numberl is " & numberl £l | f
5 output "number2 iz " & number2

6
7 # Swap the contents of the two variables.

Il
I

| Hold down the mouse button , move the
L: 3 mmbers oo v mouse to the desired location, and then

11 set number2 to temp

Pl e release the mouse button.

14 output "number
15 output "number? is " & number2
16

OQutput

1 1 Read Ovr Block Sync Rec Caps

1120
l ‘Il File: Document], 0 bytes, 0 lines, PC, ANSI
[—

File: "swap.spl”

To drag-and-drop text from the interpreter to a native application, select the text

you want to copy, and then:
Drag it to the native application window; and

Drop the text in the desired location.

1.

2.

Drag-and-Drop 2

[T’ TextPad - Documentl = . E‘M
= O E |U -] 1-" H D File Edit Search View Inms.Ma{ s Configure Window Help \ \
3 Memory N EERE ¥ DR EEIR T @Y AR TR e p - Findincementally L 2
Hold down the mouse button , move
the mouse to the desired location,
e .. N_ andthen release the mouse button.
File: Untilzd e 64 bytes selected 1 65| Read Ovr Block Sync|Rec Caps

To drag-and-drop text from a native application to the interpreter, select the text
you want to copy, and then:

. Drag it to the interpreter’s code window; and

.. Drop the text in the desired location.

Using the Copy and Paste Buttons

As an alternative to “drag-and-drop”, you can use the
Copy and Paste buttons to transfer text between the
interpreter and a native application.

These actions require access to your local machine and
therefore require special permission.

Examples ...

Using the Copy Button

—m

[

I

e
=
=

File Search View Tools Macros Configure Window Help

B === = aeg 47 a, iner e
1 # Get two numbers from the user and display them. 4 W O e == 29DV 4RI EadT| e ue p o Findincrementally [2
2 input numberl prompt "Enter the first number:" P - X
3 input number2 prompt "Enter the second number:™ ki —
4 putput "numberl i3z " & numberl L
5 output "number? is " & number2
&
7 # Swap the contents of the two variables. Paste Z
& output "awapping ..."
9 get temp to numberl Cut Other
10 set numberl to number2 Copy Other »
11 set number? to temp
iz H Insert 3
13 # Display the two variables again. = Delet R
14 output "numberl is " & numberl :| User Input elete
i; ocutput "number? is " & number2 4 Change Case b
i | Transpase 4
Output Align 3
=
=
=
File: "swap.spl” 1120
e I Insert C Select All CirieA 1| 1 Read| Ovr Block Sync Rec Caps

To copy text from the interpreter to a native application, select the text you want to

copy and then:
.. Press the Copy button in the interpreter; and
. Use the native application’s “paste” function.

This requires local machine permissions.

Using the Paste Button

O

= = n
= O =) L I | H File Search View Tools Macros Configure Window Help
1 1 Memory S 0= Undo GueZ Py = e A DY L FatP e ue » - Findincrementally [7
- x
—
-
Cut Other 3
Copy Other 3
: Insert 3
| User Input Delete »
: Change Case 3
Qutput Transpose »
Align 3
5= Increaselndent Ctrl+Shift+.
= Reducelndent Ctrl+Shift+,
*= | Reformat Ctrl+Shift+)
File: Untitled 101
Select All Ctrl+A 2 64| Read Owr| Block Sync Rec Caps

To paste text from a native application to the interpreter, select the text you want to
copy and then:

.. Use the native application’s “copy” function; and

. Press the Paste button in the interpreter.

This requires local machine permissions.

End of Presentation

	Start of Presentation
	Background and System Requirements
	Background
	System Requirements
	System Requirements
	System Requirements
	Overview of Application Components
	Sections
	Windows
	Windows
	Windows
	Status Bar
	The Tool Bar – Details
	Tool Bar
	Tool Bar
	Tool Bar
	Tool Bar
	Tool Bar
	Tool Bar
	Tool Bar
	Running a Program
	Running a Program
	Running a Program
	Running a Program
	Running a Program
	Running a Program
	Running a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Formatting Code
	Formatting Code
	Formatting Code
	Snapshots
	Snapshots
	Snapshots
	Snapshots
	File Operations
	File Operations
	File Operations
	File Operations
	File Operations – Save Example
	File Operations – Save Example
	File Operations – Save Example
	File Operations
	Transferring Text
	Drag-and-Drop
	Drag-and-Drop 1
	Drag-and-Drop 2
	Using the Copy and Paste Buttons
	Using the Copy Button
	Using the Paste Button
	End of Presentation

