
Introduction to the SPL Interpreter

Stephen Monk
November 2011

Background and System Requirements

• This is an introduction to the SPL interpreter –
the application that executes programs
written in SPL.

• It is not an introduction to SPL itself.
• However, even if you don’t know SPL, you will

probably understand most of this
presentation.

Background

• The SPL interpreter requires a Java virtual machine (version 6 or
later) and any modern browser (IE, Firefox, Chrome, Safari, etc.)

• The essential features of the SPL interpreter are available in all
computing environments that meet those conditions. These
features are:
– Creating and running programs
– Tracing programs with breakpoints
– Formatting code
– Creating snapshots of a program’s state
– Drag-and-Drop text between the interpreter and native applications.

System Requirements

Continued ...

• Two additional features of the interpreter – File Operations and
Copy/Paste – require permission to access your local machine. Permission
is granted via the Java Network Launch Protocol (JNLP).

• It is very likely that JNLP is already installed on your machine – it is part of
all recent Java releases.

• However, if JNLP is not available on your computer, and if you are not
allowed to install it (perhaps because you are in a restricted environment,
such as a computer lab), then:
– You will not see the buttons related to these features. (See next slide.)

– You will not be able to use these features (but note that Drag-and-Drop is still
available.)

– In this tutorial, simply skip the sections dealing with these features.

System Requirements

System Requirements

These features require access
to your machine via JNLP.

If you don’t see these buttons,
don’t worry – you can still use
the essential features of the
interpreter.

File Operations Copy/Paste

Proceed with tutorial ...

Overview of Application Components

Sections

Status Bar

Code Editor

Shows values of all
variables stored in

memory during
program

execution.

Shows values
entered by the

user during
program execution
– i.e., as a result of

“input”
commands.

Your program goes here.

Shows all output produced by your program
during execution.

Tool Bar

Windows

Adjust the sizes of the windows
by dragging the separator bars.

Or use the blue arrows to
maximize or minimize.

Windows

Note: scroll bars will appear automatically
 in all windows when needed.

Windows

Line Numbers Current Line
Highlighting

Status Bar

Cursor Position
line | column

Current File

The Tool Bar – Details

Tool Bar

Toggle line numbers on/off

Tool Bar

Run program / Navigate breakpoints

Tool Bar

Format code / Undo formatting

Tool Bar

Create a snapshot of current program state.

Tool Bar

Create, open, and save files.

Tool Bar

Transfer text to/from system clipboard.

Tool Bar

Each button on the tool bar will display a brief description of
its function when the mouse hovers over it.

Running a Program

Running a Program

After you have entered a program
here, in the editor window, you are
ready to run the program.

The following slides demonstrate how
to do this with an example program.

Running a Program

What does this program do?

•. It asks the user to enter two numbers.
The two numbers are stored in the
variables “number1” and “number2”.
(lines 2-3)

•. It then displays the variables. (lines 4-5)
•. Then it swaps the contents of the two

variables. (lines 9-11)
•. Finally, it displays the contents of the

two variables again. (lines 14-15)

Running a Program

What output will the program produce?

Suppose the first number entered is 29,
and the second number is 53. Then we
should see the following output:

number1 is 29
number2 is 53
swapping ...
number1 is 53
number2 is 29

Running a Program

We will press the
Run button to run
the program ...

... and ...

Running a Program

The output is what we expected.

but there’s more ...

Running a Program
• The Memory window shows the current

values of all variables.
• So, after the program has finished, the final

values of the variables are displayed.
• Notice that it also shows the variable “temp”

– this variable was not set by the user, but
came from the line 9 of the program.

• The User Input window shows the original
values of any variables that came from the
user (i.e., from an “input” command).

• For example, notice that the value of
“number1” shown here is 29, which is the
value the user originally entered.

Debugging/Tracing a Program

• Most programs execute very quickly. There are many
things happening in the computer’s memory during that
short time.

• It is sometimes useful to watch what is happening at a
slower pace.
– Lets us understand why the program behaves the way

it does.
– Helps us figure out problems with the program.

Debugging/Tracing a Program

• The process of examining the state of a program at
intermediate points in its life-cycle is called “debugging”
or “tracing”.

• This is accomplished with the use of breakpoints.
– A breakpoint is an instruction that tells the program to

pause at a particular line.

Debugging/Tracing a Program

• You can add a breakpoint to your program by clicking on the
line number to the left of the code. The line of code will be
highlighted in pink.

• You can remove a breakpoint by clicking the line number
again. The highlighting will disappear.

• You can add as many breakpoints as you want, but only on
lines that contain executable code.
– You can’t add a breakpoint to a blank line, a line containing a

comment, or a line starting with “else”, “endif”, or “endwhile”.

Debugging/Tracing a Program

• When you run the program, it will pause when it reaches
a breakpoint and wait for you to tell it to continue. This
allows you to see what is happening at that point.

• To illustrate the debugging features, let’s return to the
“swap” program that we used earlier ...

Debugging/Tracing a Program

Debugging/Tracing a Program

Three breakpoints
have been set – at
lines 4, 10, and 11.

What will happen when we run the program?

• All of the code before line 4 will execute, and
then the program will pause at line 4.

• The highlighting on line 4 will change from
pink to green.

• The tool bar will change to indicate that the
program is now in “debug” mode:
• the Run button will be disabled;
• the Next button and the Finish button

will be enabled.

FinishNextRun

Continued ...

Debugging/Tracing a Program

The program has paused at line 4.
(This is indicated by the green
highlighting on line 4.)

Note that the variables in the
Memory window have the same
values as shown in the User Input
window.

This is because the variables have not
yet been changed by the program.

Also note that the Run button is now disabled, and
the Next and Finish buttons are enabled.

Continued ...

Debugging/Tracing a Program

To proceed, we have a choice:
• Pressing the Next button will

advance to the next breakpoint
(line 10 in this case); or

• Pressing the Finish button will
ignore the remaining
breakpoints and complete the
program without pausing again.

Let’s choose the first option ...

Continued ...

Debugging/Tracing a Program

Continued ...

Lines 4, 5, 8, and 9 have been
executed, and the program has
paused at line 10.

In the Output window,
we see the results of
lines 4, 5, and 8.

In the Memory window, we see
the result of line 9: the variable
“temp” has been created with the
same value as “number1”.

Now let’s press the Next button again to
advance to the next breakpoint (line 11).

Debugging/Tracing a Program

Continued ...

Line 10 has been executed, and the
program has paused at line 11.

In the Memory window, we see the
result of line 10: the variable
“number1” has been changed so that it
contains the same value as “number2”.

Now let’s press the Next button again. Since
there are no more breakpoints, this will
complete the program’s execution.

Debugging/Tracing a Program

Lines 11-15 have been executed,
and the program is finished.

Note that the Run button is now
enabled again, and the Next and
Finish buttons are disabled.

In the Output window,
the results of lines 14 and
15 have been appended.

In the Memory window, we see the
result of line 11: the variable
“number2” has been changed so that it
contains the same value as “temp”.

Formatting Code

Formatting Code

Once you have entered some code, pressing the Format button will
do the following:
• Start a new line for each occurrence of “input”, “output”, “set”,

“if”, “else”, “elseif”, “endif”, “while”, and “endwhile”.
• Indent the contents of each “if-elseif-else-endif” and “while-

endwhile” block.
• Ensure that there is at least one space before and after each

mathematical, relational, and logical operator.

Warning: All breakpoints will be removed!

see next slide for example ...

Formatting Code

Undo button is
now enabled.

Snapshots

Snapshots

Pressing the Snapshot button creates a
report containing information about
the current state of the program.

The report shows the contents of the four
windows: the Code window, the Memory
window, the User Input window, and the
Output window.

You can produce a snapshot report at any time
– before running a program, while paused at a
breakpoint, or after the program has finished.

The report is produced in HTML format and is
displayed in a new window in your browser.

Example ...

Snapshots

Continued ...

The “swap” program is
running and is paused at a
breakpoint at line 11.

A snapshot report should
accurately display the
contents of the four
windows. (It won’t show the
line highlighting, though.)

Let’s press the Snapshot
button to see the result ...

Snapshots

The report shown below is one document,
but it’s too big to show in one screen.

In fact, the reason that the Snapshot feature
exists is because a screenshot doesn’t have
enough room to show everything at once.

The report is independent
of the program.

It is standard HTML, so you
can now do whatever you
want with it – save it, print
it, email it, etc.

File Operations
(Skip this section if these features are not available in your environment.)

File Operations

The New File button closes
the current file (if any) and
starts a new, blank file.

File Operations

The Open File button
displays a new window that
allows you to choose an
existing file on your local
machine.

File Operations

The Save button (shown disabled here) is
enabled when the contents of the code window
have changed.
• If there is an existing file open, then pressing

this button will save the contents to that file.
• If this is a new file, then pressing this button

will display a new window asking you to
name the file.

See next slide for example ...

File Operations – Save Example

Continued ...

The user has opened a file
called “userInput.spl”

The Save button is disabled
because the user has not
yet entered any new code.

File Operations – Save Example

Continued ...

The user has entered new
code on line 4.

The Save button is now enabled.

Let’s see what happens when the
button is pressed ...

File Operations – Save Example

The user has pressed the Save button.

The status bar shows the time and date
of the save operation.

The Save button is
now disabled again.

File Operations

The Save As button saves to a new file.

It opens a new window to ask for a file
name and then saves the contents of the
code window to that file.

You can use this feature instead of having to
copy the file and then rename it.

Transferring Text

• The quickest and easiest way to transfer text between
the interpreter and a native application is to “drag-and-
drop” the text.

• These actions do not access your local machine and
therefore do not require special permission.

Drag-and-Drop

Examples ...

Drag-and-Drop 1

To drag-and-drop text from the interpreter to a native application, select the text
you want to copy, and then:

1. Drag it to the native application window; and
2. Drop the text in the desired location.

Hold down the mouse button , move the
mouse to the desired location, and then

release the mouse button.

Drag-and-Drop 2

To drag-and-drop text from a native application to the interpreter, select the text
you want to copy, and then:

1. Drag it to the interpreter’s code window; and
2. Drop the text in the desired location.

Hold down the mouse button , move
the mouse to the desired location,

and then release the mouse button.

• As an alternative to “drag-and-drop”, you can use the
Copy and Paste buttons to transfer text between the
interpreter and a native application.

• These actions require access to your local machine and
therefore require special permission.

Using the Copy and Paste Buttons

Examples ...

Using the Copy Button

To copy text from the interpreter to a native application, select the text you want to
copy and then:

1. Press the Copy button in the interpreter; and
2. Use the native application’s “paste” function.

This requires local machine permissions.

1

2

Using the Paste Button

To paste text from a native application to the interpreter, select the text you want to
copy and then:

1. Use the native application’s “copy” function; and
2. Press the Paste button in the interpreter.

This requires local machine permissions.

1

2

End of Presentation

	Start of Presentation
	Background and System Requirements
	Background
	System Requirements
	System Requirements
	System Requirements
	Overview of Application Components
	Sections
	Windows
	Windows
	Windows
	Status Bar
	The Tool Bar – Details
	Tool Bar
	Tool Bar
	Tool Bar
	Tool Bar
	Tool Bar
	Tool Bar
	Tool Bar
	Running a Program
	Running a Program
	Running a Program
	Running a Program
	Running a Program
	Running a Program
	Running a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Debugging/Tracing a Program
	Formatting Code
	Formatting Code
	Formatting Code
	Snapshots
	Snapshots
	Snapshots
	Snapshots
	File Operations
	File Operations
	File Operations
	File Operations
	File Operations – Save Example
	File Operations – Save Example
	File Operations – Save Example
	File Operations
	Transferring Text
	Drag-and-Drop
	Drag-and-Drop 1
	Drag-and-Drop 2
	Using the Copy and Paste Buttons
	Using the Copy Button
	Using the Paste Button
	End of Presentation

